
Biomoléculas PROTEÍNAS Aula 01

PROF. DR. FUMACHI

Aspectos Gerais

- · Moléculas grandes, ou seja, macromoléculas;
- Unidade usada é o "dalton". Um dalton é a massa de aproximadamente igual a um hidrogênio (1 na escala de massa atômica)
- Macromoléculas biológicas são polímeros, ou seja, moléculas grandes e complexas, formadas pela repetição de moléculas simples e pequenas (blocos constitutivos).

Aspectos Gerais

- Ligações covalentes entre os constituintes;
- · Sequências das ligações determinam sua função biológica;
- Reação de condensação: eliminação de uma molécula de água (desidratação);
- Processo inverso da condensação: hidrólise, fundamental para a digestão

Aspectos Gerais

- Têm polaridade: grupos químicos distintos
- Essa polaridade pode ser entendida como "direção" no polímero (fluxo de informação gênica);

- · São macromoléculas extremamente versáteis;
- Grande variedade (arquitetura molecular)

Transporte e Armazenamento		Enzimas	
Caseína	Proteína encontrada no leite; fonte de aminoácidos.	Tripsina	Enzima digestiva dos vertebrados que catalisa a hidrólise de proteínas.
Ferritina	Proteína largamente distribuída e que armazena ferro.	RNA Polimerase	Enzima que catalisa a síntese de RNA dependente de DNA.
Contração Muscular			
Α		Estrutura	
Actina	Componente do músculo esquelético.		Proteína fibrosa presente no tecido conectivo:
Miosina	Componente do músculo esquelético.	Elastina	pulmões e em vasos sanguíneos (aorta).
Defesa		Queratina	Proteína fibrosa mecanicamente resistente dos vertebrados (cabelo, unha, penas, cascos).
	Produzidas pelo sistema imune de animais	vertebrados (cabelo, arma, perias, ca	vertebrados (cabero, arma, perias, caseos).
Anticorpos	superiores, participam da destruição de invasores biológicos (patógenos).		
Interferons	Produzidas pelos animais superiores, interferem na replicação viral.		

- · Hidrofílica: estrutura mais compacta e globular
- · Hidrofóbica: estrutura fibrilar, forma de cordão
- Globulares: funções biológicas dinâmicas (transporte de gases) Hemoglobina
- Fibrosas: funções de natureza estrutural

	Massa molecular	Número de resíduos de aminoácidos	Número de cadeias polipeptídicas
Citocromo c (humano)	13.000	104	1
Ribonuclease A (pâncreas bovino)	13.700	124	1
Lisozima (clara do ovo)	13.930	129	1
Mioglobina (coração equíneo)	16.890	153	1
Quimotripsina (pâncreas bovino)	21.600	241	3
Quimotripsinogênio (bovino)	22.000	245	1
Hemoglobina 64.500 (humana)		574	4

Soroalbumina (humana)	68.500	609	1
Hexoquinase (levedura)	102.000	972	2
RNA polimerase (<i>E.coli</i>)	450.000	4.158	5
Apolipoproteína B (humana)	513.000	4.536	1
Glutamina sintase (<i>E. coli</i>)	619.000	5.628	12

- Enfim, as proteínas são macromoléculas ou polímeros formados por unidades menores, mais simples.
- · As proteínas são formadas, basicamente por aminoácidos

Aminoácidos

Basicamente, AMINA e CARBOXILA

Figura 3.1 – Fórmula geral de um α -aminoácido.

Aminoácidos - Carboxila

Grupo funcional	Nomenclatura	Fórmula estrutural, molecular e massa molar
Álcool	<u>Etanol</u>	H ₃ C OH H ₂ OH C ₂ H ₆ O Massa molar: 46,07g/mol
<u>Enol</u>	Prop-1-en-1-ol	H ₃ C C OH C ₃ H ₆ O Massa molar: 58,08g/mol
<u>Fenol</u>	Fenol	C ₆ H ₆ O Massa molar: 94,11g/mol

Aminoácidos - Carboxila

<u>Éter</u>	Etóxietano	H ₂ H ₂ C C CH ₃ CH ₃ CH ₃ Massa molar: 74,12g/mol
<u>Aldeído</u>	Metanal	H CH ₂ O Massa molar: 30,03g/mol
<u>Cetona</u>	Propanona	H ₃ C CH ₃ C ₃ H ₆ O Massa molar: 58,08g/mol
Ácido carboxílico	Ácido etanóico	H ₃ C COH C ₂ H ₄ O ₂ Massa molar: 60,05g/mol

Aminoácidos - Carboxila

-	-	-
Sal orgânico	Etanoato de sódio	H ₃ C COO-Na ⁺ C ₂ H ₃ NaO ₂ Massa molar: 82,03g/mol
Anidrido orgânico	Anidrido etanóico	H ₃ C O C CH ₃ C ₄ H ₆ O ₃ Massa molar: 102,09g/mol
<u>Éster</u>	Butanoato de etila	H_3 C C C C C C C C C C

Aminoácidos - Amina

*As aminas são substâncias orgânicas constituídas de uma cadeia carbônica ligada a um átomo de nitrogênio. São compostos derivados da amônia (NH3), onde ocorre à substituição de um, dois ou três átomos de hidrogênios por radicais orgânicos (R).

$$H_3C - N - CH_3$$
 CH_3

Aminoácidos - Amina

$$\begin{array}{ccc} & \text{H}_3\text{C} & \text{H}_3\text{C} \\ & & | & | \\ \text{H}_3\text{C} - \text{CH} - \text{CH}_2 - \text{N} - \text{CH}_2 - \text{CH}_3 \end{array}$$

Nesse caso a numeração e identificação dos radicais ligados ao <u>nitrogênio</u> é representada pela letra N, e a representação dos radicais ligados a <u>cadeia carbônica</u> por números. Primeiro iremos identificar a cadeia mais longa que é uma cadeia com 3 carbonos. A numeração começa da esquerda para direita, e com isso temos um radical metil na posição 2, e um radical metil ligado ao <u>nitrogênio</u> e outro radical etil ligado também ao nitrogênio. Com isso o nome fica, N-etil-2,N-dimetil-propanamina.

Ligações peptídicas

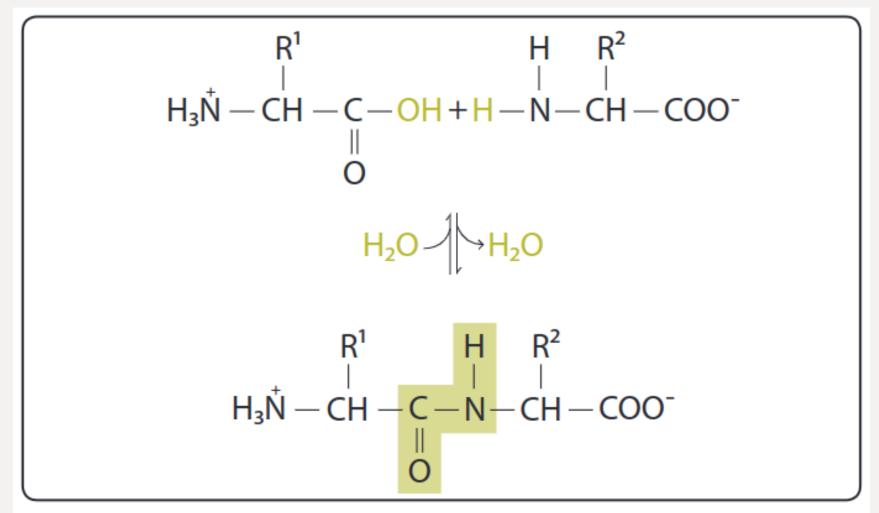
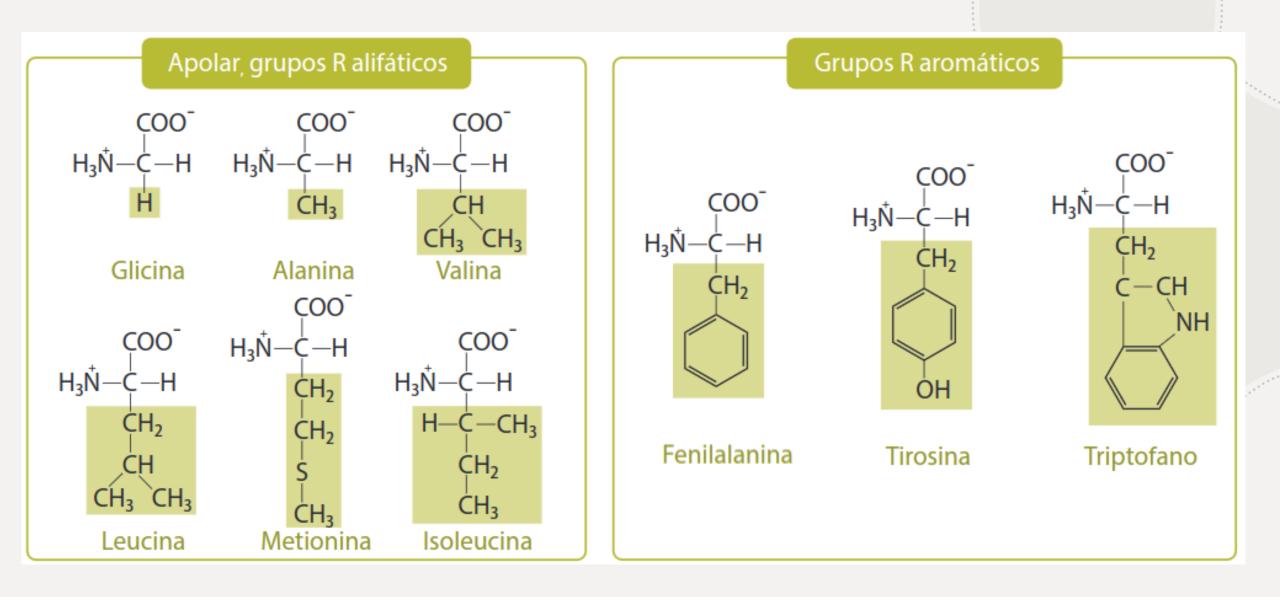
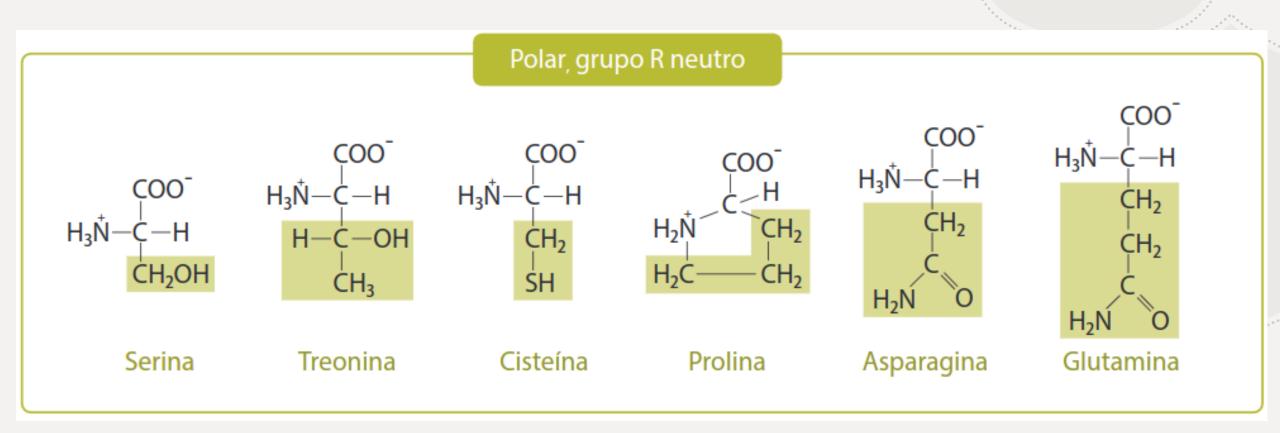
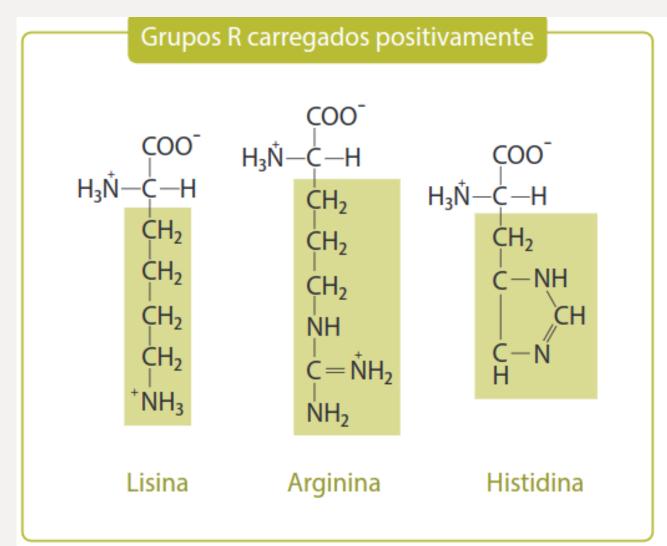


Figura 3.5 – Formação de uma ligação peptídica entre dois aminoácidos, com liberação de uma molécula de água (condensação).

- Ligações covalentes entre os constituintes;
- Reação de condensação (grupo amina e grupo carboxila);
- Formação de uma molécula de água;
- Resíduos de aminoácidos permanecem ligados covalentemente;
- Ligação peptídica = amida


Peptideos


- Os peptídeos são formados por ligações entre um pequeno número de aminoácidos (maior ou igual a 2);
- · Alguns peptídeos podem atuar como hormônios, ou seja, possuem atividade biológica;
- Uma cadeia polipeptídica é o resultado de um polímero formado por ligações peptídicas entre centenas de aminoácidos.


Níveis de organização

- Têm polaridade: grupos químicos distintos
- Essa polaridade pode ser entendida como "direção" no polímero (fluxo de informação gênica);

- · São macromoléculas extremamente versáteis;
- Grande variedade (arquitetura molecular)

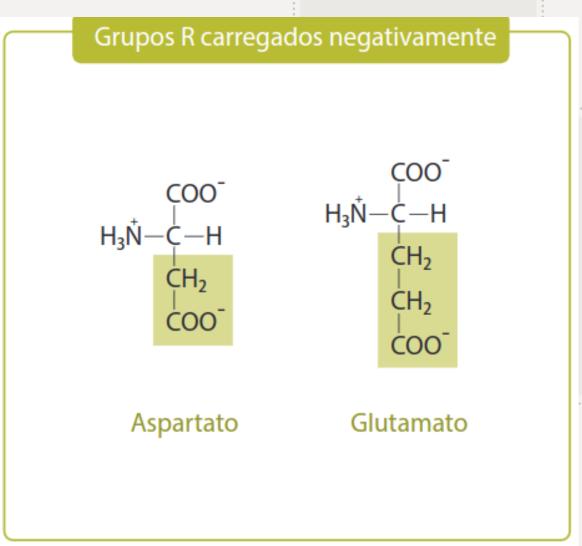


Figura 3.5 – Formação de uma ligação peptídica entre dois aminoácidos, com liberação de uma molécula de água (condensação).